L, P

Modified from Ward, J. V. (1992). "Aquatic Insect Ecology," Vol. 1, "Biology and Habitat." Wiley, New York.

Modified from Ward, J. V. (1992). "Aquatic Insect Ecology," Vol. 1, "Biology and Habitat." Wiley, New York.

marine habitats by competitive exclusion. Problems with osmoregulation have been given as another reason for the paucity of saltwater species; however, one of the two multicellular animals found in the Great Salt Lake is a member of the order Diptera (see later: Unusual Habitats), providing evidence that some insects display a strong ability to osmoregulate.

The first aquatic insects are believed to have inhabited flowing water as early as the Permian and Triassic. It was not until the late Triassic and early Jurassic that evidence of abundant lentic, or still-water, fauna arose, accompanied by rapid diversification of water beetles, aquatic bugs (Heteroptera), and primitive Diptera. On the basis of several lines of evidence including osmoregulation, fossil evidence, secondary invasions to water of many taxa, and great variation in gill structure among and within orders, some authors have suggested that the first insects may have lived in water rather than in terrestrial habitats. However, the general consensus is that an aquatic origin for insects seems unlikely and that aquatic insects may not have shown up until 60 to 70 million years later than their terrestrial counterparts.

Freshwater systems are often divided into standing (lentic) and flowing (lotic) waters. Although such a division is useful for indicating physical and biological differences, habitat diversity can vary tremendously within these two broad categories, and some of the same taxa may be found in both lentic and lotic habitats, depending on the physiological constraints of a given habit. Many factors influence successful colonization of aquatic insects to a given habitat; however, most of these would fall under four broad categories: (1) physiological constraints (e.g., oxygen demands, respiration, osmoregulation, temperature effects), (2) trophic considerations (e.g., food acquisition), (3) physical constraints (e.g., coping with harsh habitats), and (4) biotic interactions (e.g., predation, competition). However, these categories are so interrelated that detailed analysis of each factor separately is very difficult.

0 0

Post a comment