Color Matching And Crypsis

An insect that is perfectly camouflaged is perhaps one of the most striking exhibitions of the power of evolution by natural selection to mold and adapt organisms to fit their environment and to maximize survival and reproductive success. Wonderful examples of camouflage are presented by many species of insects, including some butterflies in tropical forests (Fig. 1A), which rest on carpets of dead brown leaves. The apparent perfection of crypsis is emphasized in many such insects by a similarity of, and matching of, the color pattern of the wings, body, and appendages to the background on which they normally rest. The color pattern of these different body parts and structures must involve different genetic and developmental pathways, and yet evolution has led to a corresponding perfection of matching, albeit using entirely different mechanisms of pattern formation. Such an example of an underlying complexity of patterning is given by some caterpillars of the family Lasiocampidae that rest on the bark of trees and survive by resemblance to the background color pattern of the bark, including epiphytic lichens and algae (Fig. 1C). Such larvae are encircled by long hairs that are flattened around their margin when at rest. This breaks up their shape, smoothing their outline. These hairs are also patterned in a very specific way and one that is fully coordinated with the body cuticle, including the short bristles of the dorsal areas of the body segments. These elements are exposed, and the whole insect becomes highly conspicuous as soon as a larva is forced to move along a twig of fine diameter (Fig. 1D).

Furthermore, color matching in cryspis is almost always only one component of the strategy for survival; both habitat choice and, frequently, the adoption of very specific patterns of behavior and activity are required for effective crypsis. One such example is shown by some species of moths that attain crypsis by appearing to be a dead patch of tissue within a large leaf on which they rest (Fig. 1B). They achieve this not only through the generally brown color of their wings and some details of patterning, which may resemble small patches of fungal-attacked leaf tissue, but also through a precise positioning on the leaf. For example, the moth in the photograph of Fig. 1B has rolled up the leading edge of its forewing, wrapped its abdomen along the trailing edge of one hind wing, hidden its appendages, and positioned itself alongside the midrib of the leaf.

Despite the potential fascination of understanding crypsis, it is only relatively recently that scientists have begun to analyze what is meant precisely when it is stated that an organism is well camouflaged. John Endler in 1978 stated that "a color pattern is cryptic if it resembles a random sample of the background perceived by predators at the time and age, and in the microhabitat where prey is most vulnerable to visually hunting predators." There are several crucial components in this definition. First, a color pattern is cryptic only with respect to the specific environment in which the organism is potentially encountered by the predator or the guild of predators to whom the pattern is an adaptive response. What is a cryptic pattern on the resting background of that environment may be conspicuous and ineffective on any other background. Second, the effectiveness of a particular pattern is considered with respect to the normal time and lighting conditions under which crypsis is functional. Third, to be cryptic the color pattern of a prey organism must essentially reflect a random sample of the background on which it rests.

0 0

Post a comment