Communication And Pheromones

Ants have diverse systems of communication, but by far the most important medium for signaling involves the chemicals known as pheromones. Ants can deposit chemical trails to recruit nestmates to discoveries of food. Many ants can also produce highly volatile chemicals to signal alarm when they encounter dangerous predators or other hazands. Different ants in different subfamilies use a remarkable diversity of glandular structures even just to produce recruitment pheromones. These may be produced from cloacal glands, Dufour's glands, the hindgut, poison glands, pygidial glands, rectal glands, sternal glands, or even tibial glands on the back legs. Furthermore, many pheromones appear to be complex mixtures of many chemical compounds.

Pheromones can be effective in minute quantities; it has been estimated that one milligram of the trail substance of the leafcutting ant, Atta texana, if laid out with maximum efficiency, would be sufficient to lead a colony three times around the world.

Nestmate recognition is another important aspect of communication in ants. A pleasing metaphor for the ant colony is a factory inside a fortress. Ant colonies are dedicated to the production of more ants; but workers need to "know" that they are working for their natal colony, and colonies also need to be well defended against other ants and against infiltration by other arthropods, which might tap into their resources. Ant colonies employ colony-specific recognition cues as one of their defense systems. These are often in the form of cuticular hydrocarbons that can be spread throughout the colony both by grooming and trophallaxis (the latter is usually associated with liquid food exchange). Slave-making ants circumvent the recognition cues of their slaves by capturing them as larvae and pupae—these captives are not yet imprinted on their natal colony odor but later become imprinted on the odor of the

FIGURE 2 Scanning electron micrograph of a worker of Lasius flavus with a kleptoparasitic mite, Antennophorus grandis, gripping on its head. The mite steals food when two workers exchange nutritious liquids during trophallaxis. (Photomicrograph © Nigel R. Franks.)

and back more quickly than the ants that happen to take the longer path. All the ants lay attractive trail pheromones, and such pheromones are reinforced more rapidly on the shorter path simply because that path is shorter and quicker. In such cases, individual ants do not directly compare the lengths of the two paths, but the colony is able to choose the shorter one. Sometimes the shorter path is used exclusively, while at other times a small amount of traffic may continue to use the longer path. Having some traffic that continues to use the longer path is likely to be costly in the short term, but it may represent a beneficial insurance policy if the shorter path becomes blocked or dangerous. Self-organization also has a major role in such phenomena as brood sorting, rhythms of activity within nests, and building behaviors. This new approach may help to answer, at least in part, the age-old challenge of how ant colonies are organized.

See Also the Following Articles

Caste • Colonies • Nest Building • Pheromones • Sex Determination • Sociality colony that kidnapped them after they have metamorphosed into adult workers. Sometimes colony-specific odors also can be influenced by chemicals picked up from the colony's environment. Nevertheless, countless species of arthropods from mites to beetles have infiltrated ant colonies. For example, more than 200 species of rove beetle (Staphilinidae) are associated with New World army ants alone, and other groups such as mites are probably even more species rich. Often these infiltrators are called "guests" simply because their relationships with their host ant colony and to its resources are unknown (Fig. 2).

0 0

Post a comment