Peter Zwick

Max-Planck-Institut für Limnologie

Biogeography, which deals with the description and interpretation of plant and animal distributions, is linked with other sciences, especially ecology and (paleo-) geography; zoogeography is the branch addressing animal distribution.

Most animal species inhabit restricted ranges, and only relatively few are cosmopolitan. A comparison of the areas inhabited by different species reveals common distributional patterns that are complex reflections of the ecology and of active and passive animal dispersal, but also of the evolutionary history of both the species and the earth's surface. Zoogeography was sometimes divided into different disciplines, descriptive as opposed to causal zoogeography; the latter was then subdivided into ecological and historical zoogeography. Although studies may differ in their emphasis, the interrelations among these disciplines are too close for a formal division. This article describes the major zoogeographical patterns and uses selected examples from among the insects to highlight the significance of some of the factors just mentioned.

Insects are of great geological age, and most orders existed and were diverse when familiar vertebrates were only begin ning to appear. Therefore, the distribution of most insect orders dates back much further than the distributions of many birds and mammals.

Insects are generally absent from some habitats. For example, with the exception of a few littoral specialists for unknown reasons, the only insects in the sea are some high ocean surface skaters among the bugs. Therefore, marine distribution patterns need not be considered here. The salt content of seawater is not the cause of this absence; insects are well represented in epicontinental waters of all kinds: fresh, brackish, and even hypersaline. Aquatic insects played an important role in the development of modern insect zoogeography. Because of their specific habitat ties, aquatic insects are easily collected, and the distributions of many are exceptionally well documented. Their distributions resemble those of terrestrial insects, in part because most aquatic insects have terrestrial adults that disperse over land.

The early explorers were struck by overall differences between the faunas of the lands they visited. The recognition of distinct faunal regions on a global scale thus has a long tradition and is briefly presented as an introduction. In addition to landmass topography, ecological conditions provide the basic setting for animal distributions; a brief outline of the major bioregions with similar overall ecology is therefore also presented.

Reproductively isolated species are the only naturally defined animal taxa; subspecific taxa can interbreed, whereas supraspecific taxa such as genera or families are human abstractions that change with conventions. It is convenient to use extant species to explain some concepts related to ranges and to discuss insect dispersal. Next, distribution patterns shaped by Pleistocene events are used to illustrate the importance of ecological change. The final focus is on disjunct (discontinuous, divided) distributions of monophyletic taxa that can best be explained by much older events, particularly continental drift.

0 0

Post a comment